NUTRISI DAN MEDIUM MIKROBA

Medium pertumbuhan (disingkat medium) adalah tempat untuk menumbuhkan mikroba. Mikroba memerlukan nutrisi untuk memenuhi kebutuhan energi dan untuk bahan pembangun sel, untuk sintesa protoplasma dan bagian-bagian sel lain. Setiap mikroba mempunyai sifat fisiologi tertentu, sehingga memerlukan nutrisi tertentu pula.
Susunan kimia sel mikroba relatif tetap, baik unsur kimia maupun senyawa yang terkandung di dalam sel. Dari hasil analisis kimia diketahui bahwa penyusun utama sel adalah unsur kimia C, H, O, N, dan P, yang jumlahnya + 95 % dari berat kering sel, sedangkan sisanya tersusun dari unsur-unsur lain (Tabel ). Apabila dilihat susunan senyawanya, maka air merupakan bagian terbesar dari sel, sebanyak 80-90 %, dan bagian lain sebanyak 10-20 % terdiri dari protoplasma, dinding sel, lipida untuk cadangan makanan, polisakarida, polifosfat, dan senyawa lain.

A. FUNGSI NUTRISI UNTUK MIKROBA
Setiap unsur nutrisi mempunyai peran tersendiri dalam fisiologi sel. Unsur tersebut diberikan ke dalam medium sebagai kation garam anorganik yang jumlahnya berbeda-beda tergantung pada keperluannya. Beberapa golongan mikroba misalnya diatomae dan alga tertentu memerlukan silika (Si) yang biasanya diberikan dalam
bentuk silikat untuk menyusun dinding sel. Fungsi dan kebutuhan natrium (Na) untuk beberapa jasad belum diketahui jumlahnya. Natrium dalam kadar yang agak tinggi diperlukan oleh bakteri tertentu yang hidup di laut, algae hijau biru, dan bakteri fotosintetik. Natrium tersebut tidak dapat digantikan oleh kation monovalen yang lain.
Jasad hidup dapat menggunakan makanannya dalam bentuk padat maupun cair (larutan). Jasad yang dapat menggunakan makanan dalam bentuk padat tergolong tipe holozoik, sedangkan yang menggunakan makanan dalam bentuk cair tergolong tipe holofitik. Jasad holofitik dapat pula menggunakan makanan dalam bentuk padat, tetapi makanan tersebut harus dicernakan lebih dulu di luar sel dengan pertolongan enzim ekstraseluler. Pencernaan di luar sel ini dikenal sebagai extracorporeal digestion.
Bahan makanan yang digunakan oleh jasad hidup dapat berfungsi sebagai sumber energi, bahan pembangun sel, dan sebagai aseptor atau donor elektron. Dalam garis besarnya bahan makanan dibagi menjadi tujuh golongan yaitu air, sumber energi, sumber karbon, sumber aseptor elektron, sumber mineral, faktor tumbuh, dan sumber nitrogen.
1. Air
Air merupakan komponen utama sel mikroba dan medium. Funsi air adalah sebagai sumber oksigen untuk bahan organik sel pada respirasi. Selain itu air berfungsi sebagai pelarut dan alat pengangkut dalam metabolisme.
2. Sumber energi
Ada beberapa sumber energi untuk mikroba yaitu senyawa organik atau anorganik yang dapat dioksidasi dan cahaya terutama cahaya matahari.
3. Sumber karbon
Sumber karbon untuk mikroba dapat berbentuk senyawa organik maupun anorganik. Senyawa organik meliputi karbohidrat, lemak, protein, asam amino, asam organik, garam asam organik, polialkohol, dan sebagainya. Senyawa anorganik misalnya karbonat dan gas CO2 yang merupakan sumber karbon utama terutama untuk tumbuhan tingkat tinggi.
4. Sumber aseptor elektron
Proses oksidasi biologi merupakan proses pengambilan dan pemindahan elektron dari substrat. Karena elektron dalam sel tidak berada dalam bentuk bebas, maka harus ada suatu zat yang dapat menangkap elektron tersebut. Penangkap elektron ini disebut aseptor elektron. Aseptor elektron ialah agensia pengoksidasi. Pada mikrobia yang dapat berfungsi sebagai aseptor elektron ialah O2, senyawa organik, NO3-
, NO2-, N2O, SO4=, CO2, dan Fe3+.
5. Sumber mineral
Mineral merupakan bagian dari sel. Unsur penyusun utama sel ialah C, O, N, H, dan P. unsur mineral lainnya yang diperlukan sel ialah K, Ca, Mg, Na, S, Cl. Unsur mineral yang digunakan dalam jumlah sangat sedikit ialah Fe, Mn, Co, Cu, Bo, Zn, Mo, Al, Ni, Va, Sc, Si, Tu, dan sebagainya yang tidak diperlukan jasad. Unsur yang digunakan dalam jumlah besar disebut unsur makro, dalam jumlah sedang unsur oligo, dan dalam jumlah sangat sedikit unsur mikro. Unsur mikro sering terdapat sebagai ikutan (impurities) pada garam unsur makro, dan dapat masuk ke dalam medium lewat kontaminasi gelas tempatnya atau lewat partikel debu.
Selain berfungsi sebagai penyusun sel, unsur mineral juga berfungsi untuk mengatur tekanan osmose, kadar ion H+ (kemasaman, pH), dan potensial oksidasireduksi (redox potential) medium.
6. Faktor tumbuh
Faktor tumbuh ialah senyawa organik yang sangat diperlukan untuk pertumbuhan (sebagai prekursor, atau penyusun bahan sel) dan senyawa ini tidak dapat disintesis dari sumber karbon yang sederhana. Faktor tumbuh sering juga disebut zat tumbuh dan hanya diperlukan dalam jumlah sangat sedikit.
Berdasarkan struktur dan fungsinya dalam metabolisme, faktor tumbuh digolongkan menjadi asam amino, sebagai penyusun protein; base purin dan pirimidin, sebagai penyusun asam nukleat; dan vitamin sebagai gugus prostetis atau bagian aktif dari enzim.
7. Sumber nitrogen
Mikroba dapat menggunakan nitrogen dalam bentuk amonium, nitrat, asam amino, protein, dan sebagainya. Jenis senyawa nitrogen yang digunakan tergantung pada jenis jasadnya. Beberapa mikroba dapat menggunakan nitrogen dalam bentuk gas N2 (zat lemas) udara. Mikroba ini disebut mikrobia penambat nitrogen.

B. PENGGOLONGAN MIKROBA BERDASARKAN NUTRISI DAN OKSIGEN
1. Berdasarkan sumber karbon
Berdasarkan atas kebutuhan karbon jasad dibedakan menjadi jasad ototrof dan heterotrof. Jasad ototrof ialah jasad yang memerlukan sumber karbon dalam bentuk anorganik, misalnya CO2 dan senyawa karbonat. Jasad heterotrof ialah jasad yang memerlukan sumber karbon dalam bentuk senyawa organik. Jasad heterotrof dibedakan lagi menjadi jasad saprofit dan parasit. Jasad saprofit ialah jasad yang dapat menggunakan bahan organik yang berasal dari sisa jasad hidup atau sisa jasad yang telah mati. Jasad parasit ialah jasad yang hidup di dalam jasad hidup lain dan menggunakan bahan dari jasad inang (hospes)-nya. Jasad parasit yang dapat menyebabkan penyakit pada inangnya disebut jasad patogen.
2. Berdasarkan sumber energi
Berdasarkan atas sumber energi jasad dibedakan menjadi jasad fototrof, jika menggunakan energi cahaya; dan khemotrof, jika menggunakan energi dari reaksi kimia. Jika didasarkan atas sumber energi dan karbonnya, maka dikenal jasad fotoototrof, fotoheterotrof, khemoototrof dan khemoheterotrof.
3. Berdasarkan sumber donor elektron
Berdasarkan atas sumber donor elektron jasad digolongkan manjadi jasad litotrof dan organotrof. Jasad litotrof ialah jasad yang dapat menggunakan donor elektron dalam bentuk senyawa anorganik seperti H2, NH3, H2S, dan S. jasad organotrof ialah jasad yang menggunakan donor elektron dalam bentuk senyawa organik.
4. Berdasarkan sumber energi dan donor elektron
Berdasarkan atas sumber energi dan sumber donor elektron jasad dapat digolongkan menjadi jasad fotolitotrof, fotoorganotrof, khemolitotrof, dan khemoorganotrof.
5. Berdasarkan kebutuhan oksigen
Berdasarkan akan kebutuhan oksigen, jasad dapat digolongkan dalam jasad aerob, anaerob, mikroaerob, anaerob fakultatif, dan kapnofil. Jasad aerob ialah jasad yang menggunakan oksigen bebas (O2) sebagai satusatunya aseptor hidrogen yang terakhir dalam proses respirasinya. Jasa anaerob, sering disebut anaerob obligat atau anaerob 100% ialah jasad yang tidak dapat menggunakan oksigen bebas sebagai aseptor hidrogen terakhir dalam proses respirasinya. Jasad mikroaerob ialah jasad yang hanya memerlukan oksigen dalam jumlah yang sangat sedikit. Jasad aerob fakultatif ialah jasad yang dapat hidup dalam keadaan anaerob maupun aerob. Jasad ini juga bersifat anaerob toleran. Jasad kapnofil ialah jasad yang memerlukan kadar oksigen rendah dan kadar CO2 tinggi.

C. INTERAKSI ANTAR JASAD DALAM MENGGUNAKAN NUTRIEN
Jika dua atau lebih jasad yang berbeda ditumbuhkan bersama-sama dalam suatu medium, maka aktivitas metabolismenya secara kualitatif maupun kuantitatif akan berbeda jika dibandingkan dengan jumlah aktivitas masing-masing jasad yang ditumbuhkan dalam medium yang sama tetapi terpisah.
Fenomena ini merupakan hasil interaksi metabolisme atau interaksi dalam penggunaan nutrisi yang dikenal sebagai sintropik atau sintropisme atau sinergitik. Sebagai contoh ialah bakteri penghasil metan yang anaerob obligat tidak dapat menggunakan glukosa sebagai substrat, tetapi bakteri tersebut akan segera tumbuh oleh adanya hasil metabolisme bakteri anaerob lain yang dapat menggunakan glukosa.
Contoh lain ialah biakan campuran yang terdiri atas dua jenis mikroba atau lebih sering tidak memerlukan faktor tumbuh untuk pertumbuhannya. Mikroba yang dapat mensintesis bahan selnya dari senyawa organik sederhana dalam medium, akan mengekskresikan berbagai vitamin atau asam amino yang sangat penting untuk mikroba lainnya. Adanya ekskresi tersebut memungkinkan tumbuhnya mikroba lain. Kenyataan ini dapat menimbulkan koloni satelit yang dapat dilihat pada medium padat. Koloni satelit hanya dapat tumbuh kalau ada ekskresi dari mikroba lain yang menghasilkan faktor tumbuh esensiil bagi mikroba tersebut.
Bentuk interaksi lain adalah cross feeding yang merupakan bentuk sederhana dari simbiose mutualistik. Dalam interaksi ini pertumbuhan jasad yang satu tergantung pada pertumbuhan jasad lainnya, karena kedua jasad tersebut saling memerlukan faktor tumbuh esensiil yang diekskresikan oleh masing-masing jasad.

D. MEDIUM PERTUMBUHAN MIKROBA
Susunan dan kadar nutrisi suatu medium untuk pertumbuhan mikroba harus seimbang agar mikroba dapat tumbuh optimal. Hal ini perlu dikemukakan mengingat banyak senyawa yang menjadi zat penghambat atau racun bagi mikroba jika kadarnya terlalu tinggi (misalnya garam dari asam lemak, gula, dan sebagainya). Banyak alga yang sangat peka terhadap fosfat anorganik. Disamping itu dalam medium yang terlalu pekat aktivitas metabolisme dan pertumbuhan mikroba dapat berubah. Perubahan faktor lingkungan menyebabkan aktivitas fisiologi mikroba dapat terganggu, bahkan mikroba dapat mati.
Medium memerlukan kemasaman (pH) tertentu tergantung pada jenis jasad yang ditumbuhkan. Aktivitas metabolisme mikroba dapat mengubah pH, sehingga untuk mempertahankan pH medium ditambahkan bahan buffer. Beberapa komponen penyusun medium dapat juga berfungsi sebagai buffer.

E. MACAM MEDIUM PERTUMBUHAN
1. Medium dasar/ basal mineral
Medium dasar adalah medium yang mengandung campuran senyawa anorganik. Medium dasar ini selanjutnya ditambah zat lain apabila diperlukan, misalnya sumber karbon, sumber energi, sumber nitrogen, faktor tumbuh, dan faktor lingkungan yang penting seperti pH dan oksigen serta tekanan osmosis.
2. Medium sintetik
Medium sintetik adalah medium yang seluruh susunan kimia dan kadarnya telah diketahui dengan pasti. Sebagai contoh adalah medium dasar yang ditambah NH4Cl (medium 1) dengan sumber karbon berupa gas CO2, apabila diinkubasikan dalam keadaan gelap dapat digunakan untuk menumbuhkan bakteri nitrifikasi khemoototrof, misalnya bakteri Nitrosomonas. Bakteri ini memperoleh energi dari oksidasi amonium,
selain itu amonium juga berfungsi sebagai sumber nitrogen.
Contoh lain adalah medium dengan susunan sama dengan medium 1 tetapi ditambah glukosa (medium 2). Dalam keadaan aerob merupakan medium untuk perbanyakan jamur dan bakteri yang bersifat heterotrof. Glukosa berfungsi sebagai sumber karbon dan sumber energi. Dalam keadaan anaerob, medium ini dapat digunakan untuk menumbuhkan bakteri fakultatif anaerob maupun anaerob obligat. Energi diperoleh dari hasil fermentasi glukosa. Untuk menumbuhkan mikroba yang memerlukan faktor tumbuh dapat menggunakan medium yang komposisinya sama dengan medium 2 tetapi ditambah asam nikotinat (vitamin) sebagai faktor tumbuh (medium 3).
3. Medium kompleks
Medium kompleks adalah medium yang susunan kimianya belum diketahui dengan pasti. Sebagai contoh medium ini adalah medium dasar yang ditambah glukosa dan ekstrak khamir (medium 4). Susunan kimia ekstrak khamir tidak diketahui secara pasti, tetapi mengandung berbagai faktor tumbuh yang sering diperlukan oleh mikroba. Medium ini dapat untuk menumbuhkan mikroba khemoheterotrof aerob maupun anaerob baik yang memerlukan maupun yang tidak memerlukan faktor tumbuh. Medium yang juga termasuk medium kompleks adalah yang mengandung ekstrak tanah.
4. Medium diperkaya
Medium Medium diperkaya adalah medium yang ditambah zat tertentu yang merupakan nutrisi spesifik untuk jenis mikroba tertentu. Medium ini digunakan untuk membuat kultur diperkaya (enrichment culture) dan untuk mengisolasi mikroba spesifik, dengan cara mengatur faktor lingkungan (suhu, pH, cahaya), kebutuhan nutrisi spesifik dan sifat fisiologinya. Dengan demikian dapat disusun medium diperkaya untuk bakteri yang bersifat khemoheterotrof, khemoototrof, fotosintetik, dan untuk mikroba lain yang bersifat spesifik.

ENZIM MIKROBA

FAKTOR-FAKTOR YANG MEMPENGARUHI REAKSI ENZIMATIK
Protein adalah bagian utama enzim yang dihasilkan sel, maka semua hal yang
dapat mempengaruhi protein dan sel akan berpengaruh terhadap reaksi enzimatik.

1. Substrat (reaktan)
Kecepatan reaksi enzimatik umumnya dipengaruhi kadar substrat. Penambahan
kadar substrat sampai jumlah tertentu dengan jumlah enzim yang tetap, akan
mempercepat reaksi enzimatik sampai mencapai maksimum. Penambahan substrat
selanjutnya tidak akan menambah kecepatan reaksi.
Kecepatan reaksi enzimatik juga dipengaruhi kadar enzim, jumlah enzim yang
terikat substrat (ES) dan konstanta Michaelis (Km). Km menggambarkan mesetimbangan
disosiasi kompleks ES menjadi enzim dan substrat. Nilai Km kecil berarti enzim
mempunyai afinitas tinggi terhadap substrat maka kompleks ES sangat mantap,
sehingga kesetimbangan reaksi kearah kompleks ES. Apabila nilai Km besar berarti
enzim mempunyai afinitas rendah terhadap substrat, sehingga kesetimbangan reaksi
kearah E + S.

2. Suhu
Seperti reaksi kimia pada umumnya, maka reaksi enzimatik dipengaruhi oleh
suhu. Kenaikan suhu sampai optimum akan diikuti pula oleh kenaikan kecepatan reaksi
enzimatik. Kepekaan enzim terhadap suhu pada keadaan suhu melebihi optimum
disebabkan terjadinya perubahan fisikokimia protein penyusun enzim. Umumnya enzim
mengalami kerusakan (denaturasi) pada suhu diatas 50oC. Walaupun demikian ada
beberapa enzim yang tahan terhadap suhu tinggi, misalnya taka-diastase dan tripsin.

3. Kemasaman (pH)
pH dapat mempengaruhi aktivitas enzim. Daya katalisis enzim menjadi rendah
pada pH rendah maupun tinggi, karena terjadinya denaturasi protein enzim. Enzim
mempunyai gugus aktif yang bermuatan positif (+) dan negatif (-). Aktivitas enzim akan
optimum kalau terdapat keseimbangan antara kedua muatannya. Pada keadaan masam
muatannya cenderung positif, dan pada keadaan basis muatannya cenderung negatif
sehinggaaktivitas enzimnya menjadi berkurang atau bahkan menjadi tidak aktif. pH
optimum untuk masing-masing enzim tidak selalu sama. Sebagai contoh amilase jamur
mempunyai pH optimum 5,0, arginase mempunyai pH optimum 10.

4. Penghambat enzim (inhibitor)
Inhibitor enzim adalah zat atau senyawa yang dapat menghambat enzim dengan
beberapa cara penghambatan sebagai berikut:
a. Penghambat bersaing (kompetitif)
Penghambatan disebabkan oleh senyawa tertentu yang mempunyai struktur
mirip dengan substrat saat reaksi enzimatik akan terjadi. Misalnya asam malonat dapat
menghambat enzim dehidrogenase suksinat pada pembentukan asam fumarat dari
suksinat. Struktur asam suksinat mirip dengan asam malonat. Dalam reaksi ini asam
malonat bersaing dengan asam suksinat (substrat) untuk dapat bergabung dengan
bagian aktif protein enzim dehidrogenase. Penghambatan oleh inhibitor dapat dikurangi
dengan menambah jumlah substrat sampai berlebihan. Daya penghambatannya
dipengaruhi oleh kadar penghambat, kadar substrat dan aktivitas relatif antara
penghambat dan substrat.
b. Penghambat tidak bersaing (non-kompetitif)
Zat-zat kimia tertentu mempunyai afinitas yang tinggi terhadap ion logam
penyusun enzim. Senyawa-senyawa seperti sianida, sulfida, natrium azida, dan karbon
monooksida adalah senyawa penghambat untuk enzim yang mengandung Fe, yaitu
dengan terjadinya reaksi antara senyawa-senyawa tersebut dengan ion Fe yang
menyebabkan enzim menjadi tidak aktif. Merkuri (Hg) dan perak (Ag) merupakan
penghambat enzim yang mengandung gugusan sulfhidril (-SH).
Pada penghambatan nonkompetitif tidak terjadi persaingan antara zat
penghambat dengan substrat. Misalnya enzim sitokrom oksidase dihambat oleh CO
(karbon monooksida) dengan mengikat Fe yang merupakan gugusan aktif enzim
tersebut. Penghambatan nonkompetitif tidak dapat dikurangi dengan penambahan
jumlah substrat, oleh karena daya penghambatannya dipengaruhi oleh kadar
penghambat dan afinitas penghambat terhadap enzim.
c. Penghambat umpan balik (feed back inhibitor)
Penghambatan umpan balik disebabkan oleh hasil akhir suatu rangkaian reaksi
enzimatik yang menghambat aktifitas enzim pada reaksi pertama.
d. Penghambat represor
Represor adalah hasil akhir suatu rangkaian reaksi enzimatik yang dapat
mempengaruhi atau mengatur pembentukan enzim-enzim pada reaksi sebelumnya.
e. Penghambat alosterik
Penghambat alosterik adalah penghambat yang dapat mempengaruhi enzim
alosterik. Enzim alosterik adalah enzim yang mempunyai dua bagian aktif, yaitu bagian
aktif yang menangkap substrat dan bagian yang menangkap penghambat. Apabila ada
senyawa yang dapat memasuki bagian yang menangkap penghambat maka enzim
menjadi tidak aktif, senyawa penghambat tersebut merupakan penghambat alosterik.
Struktur senyawa penghambat alosterik tidak mirip dengan struktur substrat. Pengikatan
penghambat alosterik pada enzim menyebabkan enzim tidak aktif, sehingga substrat
tidak dapat dikatalisis dan tidak menghasilkan produk. Apabila enzim menangkap
substrat maka penghambat tidak dapat terikat pada enzim, sehingga enzim dapat aktif
mereaksikan substrat menjadi produk.

5. Aktivator (penggiat) atau kofaktor
Aktivator atau kofaktor adalah suatu zat yang dapat mengaktifkan enzim yang
semula belum aktif. Enzim yang belum aktif disebut pre-enzim atau zymogen (simogen).
Kofaktor dapat berbentuk ion-ion dari unsur H, Fe, Cu, Mg, Mo, Zn, Co, atau berupa
koenzim, vitamin, dan enzim lain.

6. Penginduksi (induktor)
Induktor adalah suatu substrat yang dapat merangsang pembentukan enzim.
Sebagai contoh adalah laktosa dapat menginduksi pembentukan enzim beta
galaktosidase.

PROTOZOA

Seperti algae, protozoa merupakan kelompok lain yang termasuk protista
eukariotik. Walaupun kadang-kadang antara algae dan protozoa kurang jelas
perbedaannya. Beberapa organisme mempunyai sifat antara algae dan protozoa.
Sebagai contoh algae hijau Euglenophyta, selnya berflagela dan merupakan sel tunggal
yang berklorofil, tetapi dapat mengalami kehilangan klorofil dan kemampuan untuk
berfotosintesa. Semua spesies Euglenophyta yang mampu hidup pada nutrien komplek
tanpa adanya cahaya, beberapa ilmuwan memasukkannya ke dalam filum protozoa.
Misalnya strain mutan algae genus Chlamydomonas yang tidak berklorofil, dapat
dikelaskan sebagai protozoa genus Polytoma. Hal ini sebagai contoh bagaimana
sulitnya membedakan dengan tegas antara algae dan protozoa.
Protozoa dibedakan dari prokariot karena ukurannya yang lebih besar, dan
selnya eukariotik. Protozoa dibedakan dari algae karena tidak berklorofil, dibedakan dari
jamur karena dapat bergerak aktif dan tidak berdinding sel, serta dibedakan dari jamur
lendir karena tidak dapat membentuk badan buah.
1. Habitat Protozoa
Protozoa umumnya hidup bebas dan terdapat di lautan, lingkungan air tawar,
atau daratan. Beberapa spesies bersifat parasitik, hidup pada organisme inang. Inang
protozoa yang bersifat parasit dapat berupa organisme sederhana seperti algae, sampai
vertebrata yang kompleks, termasuk manusia. Beberapa spesies dapat tumbuh di dalam
tanah atau pada permukaan tumbuh-tumbuhan. Semua protozoa memerlukan
kelembaban yang tinggi pada habitat apapun.
Beberapa jenis protozoa laut merupakan bagian dari zooplankton. Protozoa laut
yang lain hidup di dasar laut. Spesies yang hidup di air tawar dapat berada di danau,
sungai, kolam, atau genangan air. Ada pula protozoa yang tidak bersifat parasit yang
hidup di dalam usus termit atau di dalam rumen hewan ruminansia.
2. Morfologi Protozoa
Protozoa tidak mempunyai dinding sel, dan tidak mengandung selulosa atau
khitin seperti pada jamur dan algae. Kebanyakan protozoa mempunyai bentuk spesifik,
yang ditandai dengan fleksibilitas ektoplasma yang ada dalam membran sel. Beberapa
jenis protozoa seperti Foraminifera mempunyai kerangka luar sangat keras yang
tersusun dari Si dan Ca. Beberapa protozoa seperti Difflugia, dapat mengikat partikel
mineral untuk membentuk kerangka luar yang keras. Radiolarian dan Heliozoan dapat
menghasilkan skeleton. Kerangka luar yang keras ini sering ditemukan dalam bentuk
fosil. Kerangka luar Foraminifera tersusun dari CaO2 sehingga koloninya dalam waktu
jutaan tahun dapat membentuk batuan kapur.
Semua protozoa mempunyai vakuola kontraktil. Vakuola dapat berperan sebagai
pompa untuk mengeluarkan kelebihan air dari sel, atau untuk mengatur tekanan
osmosa. Jumlah dan letak vakuola kontraktil berbeda pada setiap spesies.
Protozoa dapat berada dalam bentuk vegetatif (trophozoite), atau bentuk istirahat
yang disebut kista. Protozoa pada keadaan yang tidak menguntungkan dapat
membentuk kista untuk mempertahankan hidupnya. Saat kista berada pada keadaan
yang menguntungkan, maka akan berkecambah menjadi sel vegetatifnya. Protozoa
merupakan sel tunggal, yang dapat bergerak secara khas menggunakan pseudopodia
(kaki palsu), flagela atau silia, namun ada yang tidak dapat bergerak aktif. Berdasarkan
alat gerak yang dipunyai dan mekanisme gerakan inilah protozoa dikelompokkan ke
dalam 4 kelas. Protozoa yang bergerak secara amoeboid dikelompokkan ke dalam
Sarcodina, yang bergerak dengan flagela dimasukkan ke dalam Mastigophora, yang
bergerak dengan silia dikelompokkan ke dalam Ciliophora, dan yang tidak dapat
bergerak serat merupakan parasit hewan maupun manusia dikelompokkan ke dalam
Sporozoa.
Mulai tahun 1980, oleh Commitee on Systematics and Evolution of the Society of
Protozoologist, mengklasifikasikan protozoa menjadi 7 kelas baru, yaitu
Sarcomastigophora, Ciliophora, Acetospora, Apicomplexa, Microspora, Myxospora, dan
Labyrinthomorpha. Pada klasifikasi yang baru ini, Sarcodina dan Mastigophora digabung
menjadi satu kelompok Sarcomastigophora, dan Sporozoa karena anggotanya sangat
beragam, maka dipecah menjadi lima kelas.
Contoh protozoa yang termasuk Sarcomastigophora adalah genera Monosiga,
Bodo, Leishmania, Trypanosoma, Giardia, Opalina, Amoeba, Entamoeba, dan Difflugia.

Anggota kelompok Ciliophora antara lain genera Didinium, Tetrahymena, Paramaecium,
dan Stentor. Contoh protozoa kelompok Acetospora adalah genera Paramyxa.
Apicomplexa beranggotakan genera Eimeria, Toxoplasma, Babesia, Theileria. Genera
Metchnikovella termasuk kelompok Microspora. Genera Myxidium dan Kudoa adalah
contoh anggota kelompok Myxospora.
3. Fisiologi Protozoa
Protozoa umumnya bersifat aerobik nonfotosintetik, tetapi beberapa protozoa
dapat hidup pada lingkung ananaerobik (misal pada saluran pencernaan manusia atau
ruminansia). Protozoa aerobik mempunyai mitokondria yang mengandung enzim untuk
metabolisme aerobik, dan untuk menghasilkan ATP melalui proses transfer elektron dan
atom hidrogen ke oksigen.
Protozoa umumnya mendapatkan makanan dengan memangsa organisme lain
(bakteri) atau partikel organik, baik secara fagositosis maupun pinositosis. Protozoa
yang hidup di lingkungan air, maka oksideng dan air maupun molekul-molekul kecil
dapat berdifusi melalui membran sel. Senyawa makromolekul yang tidak dapat berdifusi
melalui membran, dapat masuk sel secara pinositosis. Tetesan cairan masuk melalui
saluran pada membran sel, saat saluran penuh kemudian masuk ke dalam membran
yang berikatan denga vakuola. Vakuola kecil terbentuk, kemudian dibawa ke bagian
dalam sel, selanjutnya molekul dalam vakuola dipindahkan ke sitoplasma.
Partikel makanan yang lebih besar dimakan secara fagositosis oleh sel yang
bersifat amoeboid dan anggota lain dari kelompok Sarcodina. Partikel dikelilingi oleh
bagian membran sel yang fleksibel untuk ditangkap kemudian dimasukkan ke dalam sel
oleh vakuola besar (vakuola makanan). Ukuran vakuola mengecil kemudian mengalami
pengasaman. Lisosom memberikan enzim ke dalam vakuola makanan tersebut untuk
mencernakan makanan, kemudian vakuola membesar kembali. Hasil pencernaan
makanan didispersikan ke dalam sitoplasma secara pinositosis, dan sisa yang tidak
tercerna dikeluarkan dari sel. Cara inilah yang digunakan protozoa untuk memangsa
bakteri.
Pada kelompok Ciliata, ada organ mirip mulut di permukaan sel yang disebut
sitosom. Sitosom dapat digunakan menangkap makanan dengan dibantu silia. Setelah
makanan masuk ke dalam vakuola makanan kemudian dicernakan, sisanya dikeluarkan
dari sel melalui sitopig yang terletak disamping sitosom.
4. Perkembangbiakan Protozoa
Protozoa dapat berkembang biak secara seksual dan aseksual. Secara aseksual
protozoa dapatmengadakan pembelahan diri menjadi 2 anak sel (biner), tetapi pada
Flagelata pembelahan terjadi secara longitudinal dan pada Ciliata secara transversal.
Beberapa jenis protozoa membelah diri menjadi banyak sel (schizogony). Pada
pembelahan schizogony, inti membelah beberapa kali kemudian diikuti pembelahan sel
menjadi banyak sel anakan. Perkembangbiakan secara seksual dapat melalui cara
konjugasi, autogami, dan sitogami.
Protozoa yang mempunyai habitat atau inang lebih dari satu dapat mempunyai
beberapa cara perkembangbiakan. Sebagai contoh spesies Plasmodium dapat
melakukan schizogony secara aseksual di dalam sel inang manusia, tetapi dalam sel
inang nyamuk dapat terjadi perkembangbiakan secara seksual. Protozoa umumnya
berada dalam bentuk diploid.
Protozoa umumnya mempunyai kemampuan untuk memperbaiki selnya yang
rusak atau terpotong. Beberapa Ciliata dapat memperbaiki selnya yang tinggal 10 % dari
volume sel asli asalkan inti selnya tetap ada.

Struktur Sel

1. Inti Sel
Inti sel eukariotik pada interfase dikelilingi oleh suatu membran. Membran terdiri
atas 2 lapisan lemak (lipid bilayers). DNA pada inti tersebar dalam suatu struktur yang
disebut kromosom. Pembelahan inti dari satu menjadi dua anak inti dikenal sebagai
mitosis. Pada tanaman dan hewan tingkat tinggi dikenal adanya reproduksi secara
seksual. Pada saat pembuahan, ke dua inti dari sel jantan dan sel betina (gamet)
melebur membentuk sigot. Masing-masing jenis gamet menyumbang sejumlah (n)
kromosom. Dengan demikian sigot mengandung dua set kromosom (2n). Apabila gamet
bersifat haploid, maka sigot bersifat diploid. Semua sel somatik bersifat diploid
(mengandung 2 set kromosom). Pada saat generasi seksual berikutnya, kromosom
normal (2n) mengalami segregasi menjadi haploid. Proses pengurangan separo
kromosom dari 2n menjadi n kromosom disebut meiosis.
2. Membran Sel Prokariotik
Permukaan luar lipid bilayers membran sel bersifat hidrofil, sedangkan permukaan
dalamnya bersifat hidrofob. Stabilitas membran sel disebabkan oleh kekuatan hidrofobik
antara residu asam lemak dan kekuatan elektrostatis antara ujung-ujung hidrofilik. Pada
bilayer terdapat protein yang letaknya tenggelam (di dalam) bilayer atau terdapat pada
permukaannya.
Pada beberapa bakteri, membran mengelilingi sitoplasma tanpa menunjukkan
adanya lipatan. Membran pada bakteri lain mengalami pelipatan ke dalam yang disebut
mesosom. Pada bakteri fotosintetik, khlorofil tidak terdapat dalam suatu khloroplas,
melainkan terdapat dalam membran yang sangat berlipat-lipat di dalam sel, yang
disebut membran tilakoid. Sistem fotosintetik pada bakteri disamping menggunakan
khlorofil, juga karotenoid. Keduanya mengandung sistem transport elektron yang
menghasilkan ATP pada proses fotosintesis.
3. Dinding Sel
Dinding sel bakteri bersifat agak elastis. Dinding sel tidak bersifat permeabel
terhadap garam dan senyawa tertentu dengan berat molekul rendah. Secara normal
konsentrasi garam dan gula yang menentukan tekanan osmotik di dalam sel lebih tinggi
daripada di luar sel. Apabila tekanan osmose di luar sel naik, air sel akan mengalir ke
luar, protoplasma mengalami pengkerutan, dan membran akan terlepas dari dinding sel.
Proses ini disebut dengan plasmolisis.
Rangka dasar dinding sel bakteri: Rangka dasar dinding sel bakteri adalah
murein peptidoglikan. Murein tersusun dari N-asetil glukosamin dan N-asetil asam
muramat, yang terikat melalui ikatan 1,4--glikosida. Pada N-asetil asam muramat
terdapat rantai pendek asam amino: alanin, glutamat, diaminopimelat, atau lisin dan
alanin, yang terikat melalui ikatan peptida. Peranan ikatan peptida ini sangat penting
dalam menghubungkan antara rantai satu dengan rantai yang lain. Komponen dan
struktur dinding sel prokariot ini sangat unik, dan tidak dijumpai pada sel eukariotik.
Dinding sel bakteri gram positif: Dinding sel bakteri gram positif terdiri 40 lapis
rangka dasar murein, meliputi 30-70 % berat kering dinding sel bakteri. Senyawa lain
penyusun dinding sel gram positif adalah polisakarida yang terikat secara kovalen, dan
asam teikoat yang sangat spesifik.
Dinding sel bakteri gram negatif: Dinding sel bakteri gram negatif hanya terdiri
atas satu lapis rangka dasar murein, dan hanya meliputi + 10% dari berat kering dinding
sel. Murein hanya mengandung diaminopemelat, dan tidak mengandung lisin. Di luar
rangka murein tersebut terdapat sejumlah besar lipoprotein, lipopolisakarida, dan lipida
jenis lain. Senyawa-senyawa ini merupakan 80 % penyusun dinding sel. Asam teikoat
tidak terdapat dalam dinding sel ini.
Peranan lisosim dan penisilin: Lisosim adalah ensim antibakteri yang terdapat
dalam putih telur dan air mata, dan dapat dihasilkan oleh beberapa bakteri. Lisosim
akan merusak ikatan antar N-asetilglukosamin dan N-asetil asam muramat dalam
murein, sehingga lisosim dapat merombak murein. dalam dinding sel. Dinding sel yang
rusak akan menghasilkan sel tanpa dinding sel yang disebut spheroplas. Spheroplas
sangat rentan terhadap tekanan osmotik.
Penisilin akan bekerja aktif terhadap dinding sel gram positif yang sedang
membelah. Senyawa ini mengakibatkan sel tumbuh tidak beraturan. Dalam hal ini
penisilin menghambat pembentukan dinding sel.
4. Flagel dan Pili
Flagel merupakan salah satu alat gerak bakteri. Letak flagel dapar polar, bipolar,
peritrik, maupun politrik. Flagel mengakibatkan bakteri dapat bergerak berputar.
Penyusun flagel adalah sub unit protein yang disebut flagelin, yang mempunyai berat
molekul rendah. Ukuran flagel berdiameter 12-18 nm dan panjangnya lebih dari 20 nm.
Pada beberapa bakteri, permukaan selnya dikelilingi oleh puluhan sampai ratusan pili,
dengan panjang 12 nm. Pili disebut juga sebagai fimbrae. Sex-pili berperan pada
konjugasi sel. Pada bakteri Escherichia coli strain K-12 hanya dijumpai 2 buah pili.
5. Kapsul dan Lendir
Beberapa bakteri mengakumulasi senyawa-senyawa yang kaya akan air, sehingga
membentuk suatu lapisan di permukaan luar selnya yang disebut sebagai kapsul atau
selubung berlendir. Fungsinya untuk kehidupan bakteri tidak begitu esensial, namun
menyebabkan timbulnya sifat virulen terhadap inangnya. Dalam pembentukan agregasi
tanah, senyawa yang terkandung dalam kapsul atau lendir inilah yang sangat berperan.
Keberadaan kapsul mudah diketahui dengan metode pengecatan negatif menggunakan
tinta cina atau nigrosin. Kapsul akan tampak transparan diantara latar belakang yang
gelap. Pada umumnya penyusun utama kapsul adalah polisakarida yang terdiri atas
glukosa, gula amino, rhamnosa, serta asam organik seperti asam piruvat dan asam
asetat. Ada pula yang mengandung peptida, seperti kapsul pada bakteri Bacillus sp.
Lendir merupakan kapsul yang lebih encer. Adakalanya kapsul bakteri dapat dipisahkan
dengan metode penggojokan kemudian diekstrak untuk menghasilkan lendir.

Penemuan Virus

Iwanowsky menemukan bahwa filtrat bebas bakteri -(cairan yang telah disaring
dengan saringan bakteri)- dari ekstrak tanaman tembakau yang terkena penyakit
mozaik, ternyata masih tetap dapat menimbulkan infeksi pada tanaman tembakau yang
sehat. Dari kenyataan ini kemudian diketahui adanya jasad hidup yang mempunyai
ukuran jauh lebih kecil dari bakteri (submikroskopik) karena dapat melalui saringan
bakteri, yaitu dikenal sebagai virus.
Untuk membuktikan penyakit yang disebabkan oleh virus, dapat digunakan
postulat River (1937), yaitu:
1. Virus harus berada di dalam sel inang.
2. Filtrat bahan yang terinfeksi tidak mengandung bakteri atau mikroba lain yang dapat
ditumbuhkan di dalam media buatan.
3. Filtrat dapat menimbulkan penyakit pada jasad yang peka.
4. Filtrat yang sama yang berasal dari hospes peka tersebut harus dapat menimbulkan
kembali penyakit yang sama.

Penemuan Enzim

Menurut Pasteur, proses fermentasi merupakan proses vital untuk kehidupan.
Pendapat tersebut ditentang oleh Bernard (1875), bahwa khamir dapat memecah gula
menjadi alkohol dan CO2 karena mengandung katalisator biologis dalam selnya.
Katalisator biologis tersebut dapat diekstrak sebagai larutan yang tetap dapat
menunjukkan kemampuan fermentasi, sehingga fermentasi dapat dibuat sebagai proses
yang tidak vital lagi (tanpa sel).
Pada tahun 1897, Buchner dapat membuktikan gagasan Bernard, yaitu pada
saat menggerus sel khamir dengan pasir dan ditambahkan sejumlah besar gula, terlihat
dari campuran tersebut dibebaskan CO2 dan sedikit alkohol. Penemuan ini membuka
jalan ke perkembangan biokimia modern. Akhirnya dapat diketahui bahwa pembentukan
alkohol dari gula oleh khamir, merupakan hasil urutan beberapa reaksi kimia, yang
masing-masing dikatalisir oleh biokatalisator yang spesifik atau dikenal sebagai enzim.

dunia mikroba

A. Pengertian Mikroba
Jasad hidup yang ukurannya kecil sering disebut sebagai mikroba atau
mikroorganisme atau jasad renik. Jasad renik disebut sebagai mikroba bukan hanya
karena ukurannya yang kecil, sehingga sukar dilihat dengan mata biasa, tetapi juga
pengaturan kehidupannya yang lebih sederhana dibandingkan dengan jasad tingkat
tinggi. Mata biasa tidak dapat melihat jasad yang ukurannya kurang dari 0,1 mm. Ukuran
mikroba biasanya dinyatakan dalam mikron ( ), 1 mikron adalah 0,001 mm. Sel mikroba
umumnya hanya dapat dilihat dengan alat pembesar atau mikroskop, walaupun
demikian ada mikroba yang berukuran besar sehingga dapat dilihat tanpa alat
pembesar.
B. Ruang lingkup Mikrobiologi Dasar
Mikrobiologi adalah ilmu yang mempelajari mikroba. Mikrobiologi adalah salah
satu cabang ilmu dari biologi, dan memerlukan ilmu pendukung kimia, fisika, dan
biokimia. Mikrobiologi sering disebut ilmu praktek dari biokimia. Dalam mikrobiologi
dasar diberikan pengertian dasar tentang sejarah penemuan mikroba, macam-macam
mikroba di alam, struktur sel mikroba dan fungsinya, metabolisme mikroba secara
umum, pertumbuhan mikroba dan faktor lingkungan, mikrobiologi terapan di bidang
lingkungan dan pertanian. Mikrobiologi lanjut telah berkembang menjadi bermacammacam
ilmu yaitu virologi, bakteriologi, mikologi, mikrobiologi pangan, mikrobiologi
tanah, mikrobiologi industri, dan sebagainya yang mempelajari mikroba spesifik secara
lebih rinci atau menurut kemanfaatannya.
C. Penggolongan mikroba diantara jasad hidup
Secara klasik jasad hidup digolongkan menjadi dunia tumbuhan (plantae) dan
dunia binatang (animalia). Jasad hidup yang ukurannya besar dengan mudah dapat
digolongkan ke dalam plantae atau animalia, tetapi mikroba yang ukurannya sangat
kecil ini sulit untuk digolongkan ke dalam plantae atau animalia. Selain karena
ukurannya, sulitnya penggolongan juga disebabkan adanya mikroba yang mempunyai
sifat antara plantae dan animalia.
Menurut teori evolusi, setiap jasad akan berkembang menuju ke sifat plantae
atau animalia. Hal ini digambarkan sebagai pengelompokan jasad berturut-turut oleh
Haeckel, Whittaker, dan Woese. Berdasarkan perbedaan organisasi selnya, Haeckel
membedakan dunia tumbuhan (plantae) dan dunia binatang (animalia), dengan protista.
Protista untuk menampung jasad yang tidak dapat dimasukkan pada golongan plantae
dan animalia. Protista terdiri dari algae atau ganggang, protozoa, jamur atau fungi, dan
bakteri yang mempunyai sifat uniseluler, sonositik, atau multiseluler tanpa diferensiasi
jaringan.
Whittaker membagi jasad hidup menjadi tiga tingkat perkembangan, yaitu: (1)
Jasad prokariotik yaitu bakteri dan ganggang biru (Divisio Monera), (2) Jasad eukariotik
uniseluler yaitu algae sel tunggal, khamir dan protozoa (Divisio Protista), dan (3) Jasad
eukariotik multiseluler dan multinukleat yaitu Divisio Fungi, Divisio Plantae, dan Divisio
Animalia. Sedangkan Woese menggolongkan jasad hidup terutama berdasarkan
susunan kimia makromolekul yang terdapat di dalam sel. Pembagiannya yaitu terdiri
Arkhaebacteria, Eukaryota (Protozoa, Fungi, Tumbuhan dan Binatang), dan Eubacteria.
D. Ciri umum mikroba
Mikroba di alam secara umum berperanan sebagai produsen, konsumen,
maupun redusen. Jasad produsen menghasilkan bahan organik dari bahan anorganik
dengan energi sinar matahari. Mikroba yang berperanan sebagai produsen adalah algae
dan bakteri fotosintetik. Jasad konsumen menggunakan bahan organik yang dihasilkan
oleh produsen. Contoh mikroba konsumen adalah protozoa. Jasad redusen
menguraikan bahan organik dan sisa-sisa jasad hidup yang mati menjadi unsur-unsur
kimia (mineralisasi bahan organik), sehingga di alam terjadi siklus unsur-unsur kimia.
Contoh mikroba redusen adalah bakteri dan jamur (fungi).
Sel mikroba yang ukurannya sangat kecil ini merupakan satuan struktur biologi.
Banyak mikroba yang terdiri dari satu sel saja (uniseluler), sehingga semua tugas
kehidupannya dibebankan pada sel itu. Mikroba ada yang mempunyai banyak sel
(multiseluler). Pada jasad multiseluler umumnya sudah terdapat pembagian tugas
diantara sel atau kelompok selnya, walaupun organisasi selnya belum sempurna.
Setelah ditemukan mikroskop elektron, dapat dilihat struktur halus di dalam sel
hidup, sehingga diketahui menurut perkembangan selnya terdapat dua tipe jasad, yaitu:
1. Prokariota (jasad prokariotik/ primitif), yaitu jasad yang perkembangan selnya
belum sempurna.
2. Eukariota (jasad eukariotik), yaitu jasad yang perkembangan selnya telah
sempurna.
Selain yang bersifat seluler, ada mikroba yang bersifat nonseluler, yaitu virus.
Virus adalah jasad hidup yang bersifat parasit obligat, berukuran super kecil atau
submikroskopik. Virus hanya dapat dilihat dengan mikroskop elektron. Struktur virus
terutama terdiri dari bahan genetik. Virus bukan berbentuk sel dan tidak dapat
membentuk energi sendiri serta tidak dapat berbiak tanpa menggunakan jasad hidup
lain.

cacing planaria

Planaria adalah cacing yang mempunyai kemampuan regenerasi yang
tinggi. Cacing ini sangat sensitif terhadap intensitas cahaya, pH dan suhu
lingkungan dimana cacing tersebut tinggal. Populasi planaria di alam bisa
berkurang karena berbagai hal, misalnya adalah adanya banjir yang bisa
menyebabkan planaria terluka atau terpotong-potong. Apabila hal ini sering
terjadi maka populasi planaria di alam bisa berkurang. Berdasarkan hal tersebut
maka bisa dirumuskan suatu permasalahan yaitu adakah pengaruh intensitas
cahaya terhadap kecepatan regenerasi non-alami cacing planaria yang bertujuan
untuk mengetahui apakah intensitas cahaya berpengaruh terhadap kecepatan
regenerasi non-alami cacing planaria di habitatnya yaitu di sungai Semirang
Ungaran.
Populasi yang digunakan dalam penelitian ini adalah cacing planaria yang
hidup di sungai Semirang. Sampel penelitian adalah cacing planaria sebanyak
54 ekor dengan warna dan ukuran yang hampir seragam. Intensitas cahaya yang
dikenakan pada planaria selama regenerasi yaitu intensitas cahaya 50-150 Lux,
200-300 Lux, 450-550 Lux, 950 Lux-1050 Lux dan 4950-5050 Lux. Setiap
perlakuan terdiri dari 6 planaria dengan pengulangan 3 kali sehingga jumlah
cacing pada setiap perlakuan adalah 18 ekor. Kecepatan regenerasinya dihitung
setelah pemotongan kemudian data dianalisis dengan analisis regresi.
Hasil pengamatan menunjukkan tingkat kecepatan yang berbeda pada
setiap perbedaan intensitas cahaya. Kecepatan regenerasi tertinggi pada
intensitas cahaya 50-150 Lux. Kecepatan terendah pada intensitas cahaya 4950
Lux-5050 Lux Berdasarkan analisis regresi, diketahui tingkat pengaruh
intensitas cahaya terhadap kecepatan regenerasi planaria sebesar 85,4%.
Berdasarkan hasil penghitungan dapat diperoleh hasil bahwa, intensitas
cahaya berpengaruh terhadap kecepatan regenerasi non-alami cacing planaria.
Pengaruh intensitas cahaya terhadap kecepatan regenerasi non-alami cacing
planaria mencapai 85,4%.